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Abstract : In this paper we focus on 3D simulation of unsteady wake flow behind a circular cylinder.
We show that in addition to accurate formulations and sufficiently-refined meshes, efficient computing
methods are essential components of an effective simulation strategy. We use the Multi-Domain Method
(MDM) we developed recently in computation of two cases. At Reynolds number 300, we demonstrate
how the MDM enables us to use highly-refined meshes to capture wake patterns which we otherwise
cannot fully represent. At Reynolds number 140, we show that with the MDM we can extend our
computations sufficiently downstream, and with sufficient accuracy, to successfully capture the second
phase of the Karman vortex street, which has been observed in laboratory experiments, and which has
double the spacing between the vortices compared to the first phase.
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1. Introduction:
Simulation and visualization of unsteady wake flow behind a circular cylinder has attracted a large number of
computational researchers by providing a platform for testing new computational ideas, comparing with
experimental results, and better understanding some of the fundamental fluid mechanics issues involved. The large
majority of the work of the past has been limited to 2D simulations where it is possible to use very, very refined
meshes. 3D simulations are more challenging because using highly-refined meshes to capture 3D behavior could
increase the computational burden significantly, especially if one wishes to extend the computations sufficiently
downstream, and with sufficient accuracy, to successfully capture a behavior expected to be seen far downstream,
such as 300 diameters away.

Many researchers reported computational and experimental studies of 3D behavior behind a circular
cylinder (see for example [1-6]). The unsteady behavior at far downstream, including the second phase of the
Karman vortex shedding, was particularly emphasized first in [1], followed by [2-4].

In this paper we present 3D simulation and visualization of two cases of unsteady wake flow behind a
cylinder.  In the first case the Reynolds is 300, and the purpose is to see how using highly-refined meshes enables
the detailed capture of 3D effects and vortex shedding in the wake as far as 30 diameters (‾‾‾d) downstream. In the
second case the Reynolds number is 140. The second phase of the Karman vortex shedding at this Reynolds
number was reported earlier, and Cimbala [3] attributes this behavior to hydrodynamic instability. Williamson [5],
on the other hand, suggests that this behavior is caused by the sensitivity of the wake to small-scale perturbations.
Our purpose here was to capture the wake as far as 300‾d downstream, investigate the formation of the second
phase of the vortex shedding, and see how the 2D and 3D approaches differ in successful capture of this second
phase.



To be able to carry out these simulations with sufficient mesh resolution and with sufficiently long
computational domains, we need efficient computing methods which will enable us to accomplish this goal without
exceeding the practical limits of our computational resources. The Multi-Domain Method (MDM) [7,8] developed
recently was originally intended for parallel 3D computation of the unsteady wake flow in the far downstream of
an object and the influence of this wake on secondary objects located far downstream. Also recently, a
computational technique [9] largely based on the MDM was designed for simulation of unsteady wake flows
behind a circular cylinder, including cases with computational domains extending far downstream.

The core flow solution technique in the MDM is a stabilized finite formulation of the Navier-Stokes
equations of incompressible flows (see [7,8]). The stabilization techniques are the streamline-upwind/Petrov-
Galerkin (SUPG) [10] and pressure-stabilizing/Petrov-Galerkin (PSPG) [11] stabilizations. With these stabilization
techniques, we maintain the stability of the numerical formulation without introducing excessive numerical
dissipation. In the MDM, the computational domain is divided into an ordered sequence of overlapping
subdomains, where the cylinder is placed in the first subdomain. Each subsequent subdomain receives its inflow
boundary conditions from the subdomain preceding it. This strategy allows us to divide the computational task into
manageable pieces and carry out the computations for different subdomains essentially in parallel. This parallelism
is in addition to the main parallelism we have within individual subdomains. The core flow solver and the MDM
have been implemented on parallel computing platforms such as the CRAY T3E-900 and T3E-1200, and this
further increases the speed of the computations. 

In Section 2 we provide an overview of the MDM. The numerical results from the first (at Re=300) and
second (at Re=140) simulation cases are presented in Section 3 and Section 4, respectively. We provide our brief
concluding remarks in Section 5.

2. The Multi-Domain Method for Wake Computations
In the MDM, the computational domain is divided into an ordered sequence of overlapping subdomains.
Subdomain-1 (SD-1) contains the cylinder and is used for computation of the unsteady flow around and in the near
wake. The inflow boundary conditions for this first subdomain are the free-stream conditions. This subdomain is
discretized with an unstructured mesh, and the computations are carried out by using a general-purpose
implementation of the finite element formulation, applicable to elements of any shape. In this subdomain,
somewhere sufficiently ahead of the outflow boundary, we place an ''outflow layer.'' As the computations proceed,
the inflow boundary conditions for the subsequent subdomain are extracted from this outflow layer.

The subsequent subdomains, SD-2, SD-3, ..., are used for computation of the unsteady flow in wake regions
further downstream. Typically these subdomains are longer than SD-1, but have mesh resolutions comparable to
that of SD-1, and therefore lead to much larger equation systems to be solved. However, these subdomains do not
contain any objects, and therefore are discretized with highly-refined meshes with very regular-shaped elements.
Because the element shapes are special, the computations are carried out with a special-purpose implementation of
the finite element formulation. In this special implementation, the simplified data structure is recognized and
exploited to speed up the computation. The special-purpose implementation includes performing the element level
integrations analytically rather than numerically. This special-purpose implementation, with proper optimization,
yields much higher computational speeds compared to the general-purpose implementation. We note that the
computations over SD-2, SD-3, ..., can also be accomplished by methods which might be preferable to the finite
element method when meshes with regular-shaped elements are used. The inflow boundary conditions for each of
these subdomains are extracted from the outflow layer of the preceding subdomain. The extraction is accomplished
by performing a projection operation at each time step. This projection step has also been implemented in parallel.

The computations within each subdomain is carried out in parallel, where the elements in a subdomain are
distributed among the available processors in an optimal fashion. Normally we first carry out the computations for
SD-1, followed by the computations for SD-2, and so on. However, we note that the computations over these
different subdomains can be performed essentially in parallel, provided a leading subdomain is at least one time
step ahead of the following subdomain.  In fact computations over different subdomains can even be carried out on
different computational platforms (essentially) in parallel, because the data transfer between the different platforms
would just be a 2D data exchange and therefore would not add a significant communication cost. For further details
on the MDM see [8].
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3. Re=300: Effect of Mesh Refinement
The purpose here is to see how using highly-refined meshes in simulations based on the MDM enables the detailed
capture of the 3D effects and vortex shedding. We compare the solutions obtained with the single-domain and
multi-domain methods, where the mesh used with the MDM is more refined.

In the single-domain computation, we use the same mesh as the one reported in [6]. The span length of the
cylinder is 4‾d. The upstream, downstream, and crossflow (i.e. top and bottom lateral) boundaries are located,
respectively, at 7.5‾d, 30‾d, and 7.5‾d. The mesh consists of 197,948 nodes and 186,240 hexahedral elements, and
leads to 760,107 equations. The boundary conditions consist of uniform inflow velocity, zero shear stress and
normal velocity at lateral boundaries, traction-free condition at the outflow boundary, and no-slip condition on the
cylinder surface. The ''outflow layer'' is located at 2‾d downstream from the cylinder center.

In the multi-domain computation, SD-1 consists of the domain we used in the single-domain computation.
The wake subdomain, SD-2, extends 28‾d, 4‾d and 15‾d along the streamwise, spanwise, and crossflow directions,
respectively. SD-2 mesh consists of 1,163,565 nodes and 1,126,400 hexahedral elements, and leads to 4,553,457
equations. Compared to the wake region of the single-domain model, the number of elements in SD-2 is precisely
2.0 times larger in the spanwise direction, and approximately 3.3 and 1.8 times larger in the streamwise and
crossflow directions. The inflow boundary conditions are extracted by projection from the solution obtained in the
single-domain computation. The conditions imposed at the lateral and downstream boundaries are the same as
those we had in the single-domain model.

The computations were carried out on a CRAY T3E-900. The visualizations were obtained by using an SGI
Onyx2 and the visualization software Ensight. Figure 1 shows the isosurfaces corresponding to the 0.5 value of the
vorticity magnitude. Figure 1 also shows the in-plane mesh. Clearly the solution over SD-2 captures the flow
features in greater detail, and maintains these features all the way to the outflow boundary. In the near wake, the
isosurfaces representing the spanwise vorticity of the Karman vortex street are almost straight in the vertical
direction. The isosurfaces representing the in-plane vorticity, on the other hand, form horizontally layered arch
shapes. These two types of vortices interact with each other as it is revealed by the visualization provided in Fig. 1.

4. Re=140
The purpose in this case is to extend our computations sufficiently downstream to capture the long-wake flow
behavior including the second phase of the Karman vortex shedding, and to see the difference between attempting
this in 2D and 3D.

In the 2D simulation the entire domain is divided into two subdomains (see Fig. 2). For SD-1, the upstream,
downstream, and crossflow boundaries are located, respectively, at 7.5‾d, 30‾d and 10‾d from the center of the
cylinder. SD-1 mesh consists of 8,216 nodes and 8,000 quadrilateral elements, and leads to 24,094 equations.
The boundary conditions are imposed in the same way as we did for SD-1 in the Re=300 case. The outflow layer is
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Fig. 1. Re=300: effect of mesh refinement. The isosurfaces corresponding to the 0.5 value of the vorticity

magnitude. Obtained with the single-domain (upper) and multi-domain (lower) computations.



also selected in the same way as before. SD-2 starts at 2‾d downstream from the center of the cylinder and extends
to 300‾d. SD-2 mesh consists of 912,033 nodes and 905,920 quadrilateral elements, and leads to 2,723,416
equations. The inflow boundary conditions are extracted by projection from the solution obtained over SD-1. The
conditions imposed at the lateral and downstream boundaries are the same as those used for SD-1.

The computations were carried out on a CRAY T3E-1200. Figure 3 shows the vorticity. Figure 4 shows the
side view of the elevation plot for the vorticity for SD-2. The color indicates the value of the vorticity. We note
that, because of the highly-refined mesh, the near-wake Karman vortices obtained with the SD-2 are more clearly
defined. However, we also note that no second phase of vortex shedding is seen in the far wake. A clearly periodic
vorticity distribution is observed in the near wake, but this distribution decays downstream (see Fig. 4).  According
to the laboratory experiments [2,3], the transition between the first and second phases of the vortex shedding is
expected at 100‾d-150‾d. However in this 2D simulation, vorticity decays in that region (see Fig. 4). This leads us to
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Fig. 2. 2D computation at Re=140. Arrangement of the two subdomains. Frames do not show the actual

meshes.

Fig. 3. 2D computation at Re=140. Vorticity for SD-1 (upper) and SD-2 (lower).

Fig. 4. 2D computation at Re=140. Side view of the elevation plot for the vorticity for SD-2. The color

indicates the value of the vorticity (red: positive, blue: negative).
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Fig. 5. 3D computation at Re=140. Arrangement of the three subdomains. Frames do not show the actual

meshes.

Fig. 6. 3D computation at Re=140. Spanwise component of the vorticity for SD-1 (upper), SD-2 (middle),

and SD-3 (lower).

Fig. 7. 3D computation at Re=140. Side view of the elevation plot for the spanwise component of the

vorticity at the centered horizontal plane for SD-2 (upper) and SD-3 (with different scale) (lower). The color

indicates the value of the vorticity (red: positive, blue: negative).



believe that the 3D effects are the cause of the second phase of the vortex shedding.
In 3D simulation the domain is divided into three subdomains (see Fig. 5). The in-plane dimensions of SD-1

are the same as those of SD-1 in 2D simulation. In the spanwise direction, the cylinder and domain dimensions are
4‾d. The mesh consists of 213,856 nodes and 201,600 hexahedral elements, and leads to 822,479 equations. The
boundary conditions are imposed in the same way as we did for earlier SD-1 computations reported in this paper.
The outflow layer is also selected in the same way as before. SD-2 starts at 2‾d downstream from the center of the
cylinder and extends to 155‾d. SD-3 starts at 150‾d and extends to 300‾d. SD-2 mesh consists of 4,470,025 nodes and
4,308,480 hexahedral elements, and leads to 17,536,577 equations. The inflow boundary conditions are extracted
by projection from the solution obtained over SD-1. The conditions imposed at the lateral and downstream
boundaries are the same as those used for SD-1. The outflow layer is located at 150‾d downstream from the center
of the cylinder (i.e. 5‾d ahead of the outflow boundary). The mesh density for SD-3 is the same as that for SD-2.
SD-3 mesh consists of 4,382,449 nodes and 4,224,000 hexahedral elements, and leads to 17,192,513 equations.
The inflow boundary conditions are extracted by projection from the solution obtained over SD-2. The conditions
imposed at the lateral and downstream boundaries are the same as those used for SD-2.

The computations were carried out on a CRAY T3E-1200. Figure 6 shows the spanwise component of the
vorticity at the centered horizontal plane. Figure 7 shows the side view of the elevation plot for the spanwise
component of the vorticity for SD-2 and SD-3. The color indicates the value of the vorticity. SD-2 captures the
Karman vortex street in the near wake and the transition, near the outflow boundary, from the first to the second
phase of the vortex shedding. SD-3 successfully captures the second phase. The spacing between the vortices in the
second phase is approximately twice as large compared to the spacing we see in the first phase. Near the outflow
boundary of SD-2, in the transition from the first phase to the second, the vorticity loses some of its periodicity. In
the upstream regions of SD-3 the vorticity shows wider peaks. Downstream, this changes to periodic sharp peaks.
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Fig. 8. 3D computation at Re=140. Side view of the elevation plot for the streamwise component of the

vorticity at the centered horizontal plane for SD-2 (upper) and SD-3 (with different scale) (lower). The color

indicates the value of the vorticity (red: positive, blue: negative).



Figure 8 shows, for SD-2 and SD-3, the side view of the elevation plot for the streamwise component of the
vorticity at the centered horizontal plane. These results show us the presence of in-plane vortices for Reynolds
numbers as small as 140. Although the magnitude of these vortices is much smaller compared to the spanwise
vortices, the 3D behavior is evident. Comparison of 2D and 3D computations suggests that the in-plane vortices
play an important role in precipitating, in far downstream, the second phase of the vortex shedding. In other words,
the second phase of the vortex shedding is generated by very small 3D effects, which of course cannot be
represented in a 2D simulation. We also note here that in the 2D computations we used a mesh which had more
than four times as many elements compared to the in-plane mesh of the 3D computations. Despite that the 2D
solution failed to capture the second phase of the vortex shedding.

5. Concluding Remarks
With accurate formulations and sufficiently-refined meshes, combined with the effectiveness of the Multi-Domain
Method (MDM) we developed recently, we were able to simulate and visualize the details of unsteady wake flow
behind a circular cylinder. We simulated and visualized two different cases. At Reynolds number 300, we showed
how the MDM enables us to use highly-refined meshes and represent wake patterns which we otherwise cannot
fully represent. At Reynolds number 140, we carried out the computations in both 2D and 3D. We showed that
with the MDM we can extend our 3D computations sufficiently downstream, have sufficient accuracy, and capture
the second phase of the Karman vortex shedding which has double the spacing between the vortices compared to
the first phase. This second phase has been observed in laboratory experiments. Our computations also suggest that
the transition to the second phase is caused by 3D effects.
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